Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles and their electrical property testing

نویسندگان

  • Huabin Yin
  • Jinmei Luo
  • Peihui Yang
  • Pinghe Yin
چکیده

Aqueous solution synthesis of reduced graphene oxide-germanium nanoparticles (RGO-GeNPs) was developed using graphene oxide (GO) as stabilizer, which could be conducive to obtain better excellent electrical properties. The information about morphology and chemical composition of the nanomaterials were obtained by TEM, FTIR, EDS, and XRD measurements. Stable aqueous dispersibility of RGO-GeNPs was further improved by poly(sodium 4-styrenesulfonate) (PSS) to obtain amphiphilic polymer-coated RGO-GeNPs (PSS-RGO-GeNPs). A possible mechanism to interpret the formation of RGO-GeNPs was proposed. The as-synthesized RGO-GeNPs showed excellent battery performance when used as an anode material for Li ion batteries. The resulting nanocomposites exhibited high specific capacity and good cycling stability after 80 cycles. This study showed a facile strategy to synthetize graphene and Ge nanocomposites which can be a hopeful anode material with excellent electrical properties for lithium ion batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor

We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...

متن کامل

Defluoridation of Aqueous Solution by Graphene and Graphene Oxide Nanoparticles: Thermodynamic and Isotherm Studies

Fluoride, a non-essential element, can enter water resources through several natural processes and human activities. The benefits and risks of fluoride depend on the concentration of this anion on drinking waters. In the present study, the performances of graphene and graphene oxide nanoparticles were investigated for the removal of fluoride from aqueous solution. In the present resea...

متن کامل

In-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites

Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...

متن کامل

Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction

Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...

متن کامل

Dye removal from water by zinc ferrite-graphene oxide nanocomposite

In this work, zinc ferrite magnetic and zinc ferrite-graphene oxide nanocomposite were synthesized through a facile hydrothermal method and dye removal capability as an adsorbent were studied. Fourier transform infrared spectroscopy FT-IR, X-ray diffraction XRD and scanning electron microscopy SEM were used to characterize the synthesized nanocomposite. The UV-Vis results showed that the additi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013